The fate of inflorescence meristems is controlled by developing fruits in Arabidopsis.
نویسندگان
چکیده
The relationship between fruit development and the proliferative capacities of inflorescence meristems has been examined in Arabidopsis thaliana. In the wild-type Landsberg erecta (Ler) line, flower production ceases coordinately on all inflorescence branches by a process we have designated global proliferative arrest (GPA). Morphological studies indicate that GPA involves a cessation of proliferative activity at the meristems, but a retention of the structural characteristics of the proliferating meristems. GPA does not occur in the male-sterile (ms1-1) line, nor in wild-type Ler when fruits are surgically removed. In these cases, inflorescence meristems continue to proliferate, ultimately terminating by a different process, designated terminal differentiation, in which disruptions in patterning at the apex are followed by the loss of the inflorescence meristem. We present an argument that GPA is mediated by a specific communication system between inflorescence meristems and developing fruits. Analysis of reduced-fertility mutants provided evidence that GPA is dependent on seed development specifically. Mutations conferring hormone deficiency or insensitivity did not disrupt the correlative interactions leading to GPA.
منابع مشابه
The Fate of Inflorescence Meristems I s Controlled by Developing Fruits in Arabidopsis ' linda 1
The relationship between fruit development and the proliferative capacities of inflorescence meristems has been examined in Arabidopsis fhaliana. In the wild-type Landsberg erecta (Ler) line, flower production ceases coordinately on all inflorescence branches by a process we have designated global proliferative arrest (CPA). Morphological studies indicate that CPA involves a cessation of prolif...
متن کاملULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by...
متن کاملReproductive meristem fates in Gerbera.
Flowering plants go through several phases between regular stem growth and the actual production of flower parts. The stepwise conversion of vegetative into inflorescence and floral meristems is usually unidirectional, but under certain environmental or genetic conditions, meristems can revert to an earlier developmental identity. Vegetative meristems are typically indeterminate, producing orga...
متن کاملThe control of axillary meristem fate in the maize ramosa pathway.
Plant axillary meristems are composed of highly organized, self-renewing stem cells that produce indeterminate branches or terminate in differentiated structures, such as the flowers. These opposite fates, dictated by both genetic and environmental factors, determine interspecific differences in the architecture of plants. The Cys(2)-His(2) zinc-finger transcription factor RAMOSA1 (RA1) regulat...
متن کاملSeparate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity.
TERMINAL FLOWER 1 (TFL1) is a key regulator of Arabidopsis plant architecture that responds to developmental and environmental signals to control flowering time and the fate of shoot meristems. TFL1 expression is dynamic, being found in all shoot meristems, but not in floral meristems, with the level and distribution changing throughout development. Using a variety of experimental approaches we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 106 3 شماره
صفحات -
تاریخ انتشار 1994